MODULARITY AND DATA
ABSTRACTION: ADA

7.1 HISTORY AND MOTIVATION

The Software Crisis and Reliable Programming

In the 1970s the recognition of a “software crisis,” that is, that the costs of producing soft-
ware were increasing without bound, led a number of computer scientists to search for a so-
lution. For example, Dijkstra and others observed that the difficulty of producing a program
seemed to increase with the square of the program’s length, so it seemed that very large pro-
grams would be completely infeasible. It thus became necessary to find a means of writing
programs that would result in their cost being a linear function of their length.

Parnas’s Principles

One of the traditional methods used to control the complexity of a large program was mod-
ularization, the division of a program into a number of independent modules. When this is
done, each module is like a small program that can be implemented independently of the
other modules. Therefore, the work to implement the entire program is roughly the sum of
the work required for each module, that is, linear in the program size. Similarly, each mod-
ule can be debugged, understood, and maintained individually.

In 1971 and 1972, D. L. Parnas, at Carnegie-Mellon University, developed several prin-
ciples to guide the decomposition of a program into modules. One of his principles is that
there should be one module for each difficult design decision in the program. This means
that the results of each decision can be hidden in the corresponding module; if this decision
is later changed, only that module has to be modified. This is called Information Hiding and
is formalized in the Principle already introduced in Chapter 2 (Section 2.5).

Note: Ada is a registered trademark of the Ada Joint Program Office, U.S. Government.
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Abstract Data Types

A common design decision is the choice of data structure representation. For example, a
stack can be represented as an array with a top index or as a linked list; a set can be repre-
sented as an array of values or a bit string. Since the choice of data structure representation
is often a difficult design decision, in a well-modularized program there will be one module
for each data structure. Any manipulation of the data structure must then be done through
the procedures provided by the module because the representation of the data structure is
hidden in the module. To put it another way, users of the module are required to use the ab-
stract operations on the data structure (e.g., push and pop for stacks) because they are pro-
hibited from using the concrete operations (e.g., subscripting or pointer operations). It is for
this reason that a module that provides a set of abstract operations on a data structure (or
class of similar data structures), is called an abstract data type. This corresponds to our ear-
lier definition of an abstract data type: a set of data values together with a set of operations
on those data values. Specific means for designing abstract data types and modules are dis-
cussed later.

Experimental Abstract Type Languages

By 1973 a number of programming language researchers had designed languages support-
ing abstract data types and modules. These languages, which are called abstract type lan-
guages, included Alphard, CLU, Mesa, Euclid, Modula, and Tartan. Many of them were
based on the idea of a class, a construct first included in the language Simula in 1967. The
experience gained from using these experimental languages was important in the later de-
velopment of production abstract type languages, including Ada.

DoD Saw the Need for a New Language

In the mid-1970s the United States Department of Defense (DoD) identified the need for a
state-of-the-art programming language to be used by all the military services in embedded
(or mission critical) computer applications. These are applications in which a computer is
embedded in and integrated with some larger system, for instance, a weapons system or a
command, control, and communication system. (Nonembedded systems include traditional
offline scientific and data-processing applications.) At this time DoD was spending about $3
billion annually on software—most of it going for embedded systems. A significant factor
in this high cost was limited portability and reuse of software resulting from the fact that
over 400 programming languages and dialects were then in use for embedded applications.
DoD recognized that its programming needs in the 1980s and beyond would not be satisfied
by the programming languages then in use, and in 1975 it set up the Higher-Order Language
Working Group (HOLWG) to study the development of a single language for these appli-
cations. It was estimated in 1976 that such a language would save $12-24 billion over the
next 17 years.
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A Series of Specifications Was Published

In the period 1975 to 1979, HOLWG published a series of specifications that the new lan-
guage was required to meet. Each specification was more detailed than the previous, as sug-
gested by their names:

* 1975 Strawman

* 1975 Woodenman
* 1976 Tinman

* 1978 Ironman

* 1979 Steelman

Each specification made more specific or froze some of the requirements of the preceding
specification.

Information Hiding, Verification, and Concurrency

The specifications placed some general requirements on the design of the language, such as
readability and simplicity. The specifications also defined more specific requirements, in-
cluding a module facility to support information hiding, mechanisms to allow concurrent pro-
gramming, and a design amenable to verification of program correctness. There were also
many concrete requirements such as the character set and commenting conventions to be
used.

There Were Several Competing Designs

In 1977 HOLWG studied 26 existing languages and concluded that none of these met the
specifications. This led to a competitive language design effort that lasted from 1977 to 1979
and resulted in 16 proposals. Later evaluations resulted in the number being reduced to four,
then two, and eventually one.

The Winner Is Named “Ada”

The winning language was designed by a CII-Honeywell-Bull team headed by Jean Ichbiah.
In May 1979 HOLWG renamed this language “Ada” in honor of Augusta Ada, Countess of
Lovelace, the daughter of the poet Lord Byron. Ada was a mathematician and Charles Bab-
bage’s (and, hence, the world’s) first programmer. This continued a tradition of naming pro-
gramming languages after mathematicians (e.g., Pascal, Euler, Euclid). In response to over
7000 comments and suggestions from language design experts in over 15 nations, Ada was
revised and reached its final form in September 1980. It become a military and American
National Standard in January 1983, and became mandatory for all mission critical (embed-
ded) software in July 1984. It became an ISO standard in 1987.
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Subsets and Supersets Were Not Permitted

The goal of Ada is to decrease embedded computer software costs by increasing portability
and reuse of software. It was clear to the Department of Defense that such a goal could not
be achieved if there were a number of mutually incompatible subsets and supersets of Ada
in use. Therefore, DoD took the unprecedented action of registering the name “Ada” as a
trademark. This provides the ability to control the use of this name and to guarantee that
anything called “Ada” is the standard language. That is, subsets and supersets of Ada can-
not legally be called “Ada.” How does DoD decide whether a compiler does in fact imple-
ment the Ada language? For this DoD has set up a validation procedure, comprising over
2500 tests, which attempts to ensure that a candidate compiler implements no more and no
less than the standard language. We will discuss later the controversy revolving around Ada
subsets.

Ada Has Been Revised

As a result of experience with the original version of Ada, now known as Ada 83, as well
as developments in programming languages and computer technology, a project began in
1988 to develop a new version, Ada 95. The early stages of the project produced a 1990 re-
port specifying 41 requirements and 22 study topics to be addressed by the revision effort.
The resulting revision, which was standardized in 1995, is a substantial one and includes
ideas from fifth-generation object-oriented programming languages (Section 12.5). Ada 95
is mostly, but not entirely, upward compatible with Ada 83, so the programmer must be wary
of incompatibilities in converting to the new version.

Ada 95 Comprises a Core Language and
Special Needs Annexes

Because a language satisfying all the requirements would have been enormous, the prohibi-
tion against Ada versions was relaxed. Therefore the Ada 95 report describes a “core lan-
guage,” which must be implemented, and six “special needs annexes,” which are optional
extensions to the language for particular application areas (systems programming, informa-
tion systems, real-time systems, numerical programming, distributed systems, and safety and
security).

In the following, “Ada” will refer to both versions of the language unless otherwise spec-
ified.

7.2 DESIGN: STRUCTURAL ORGANIZATION

Figure 7.1 displays a small Ada module. We can see that its syntax is quite similar to Pas-
cal’s. The convention in Ada programs is to type keywords in lowercase and all other words
in upper and lowercase. Ada’s constructs can be divided into four categories:

——~L
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1. Declarations
2. Expressions
3. Statements

4. Types

Expressions and statements are very similar to their counterparts in Pascal. Types are also
similar except that they are more flexible and some of the problems of the Pascal type sys-
tem have been corrected.

The most significant differences between Pascal and Ada appear in the declarations. The
declarations in Ada can be classified:

. Object
Type
Subprogram
. Package

. Task

A W=

package Tables is
type Table is array (Integer range < >) of Float;

procedure BinSearch (T: Table; Sought: Float;
Location: out Integer; Found: out Boolean) is
subtype Index is Integer range T'First..T’Last;

Lower : Index := T'First;
Upper : Index := T'’Last;
Middle : Index := (T'First + T’Last’)/2;
begin
loop
if T(Middle) = Sought then
Location := Middle;
Found := True;
return;
elsif Upper < Lower then
Found := False;
return;
elsif T(Middle) > Sought then Upper := Middle - 1;
else Lower := Middle + 1;
end if;
Middle := (Lower + Upper)/2;
end loop;

end BinSearch;
end Tables;

Figure 7.1 An Ada Package
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The object declarations serve the same function as Pascal’s constant and variable declara-
tions. Subprogram declarations are similar to Pascal’s function and procedure declarations
although the name of the procedure is allowed to be one of Ada’s build-in operators (+, —,
=, >, etc.). This permits overloading of additional meanings onto these operators. In previ-
ous chapters we have seen that most languages overload the arithmetic operators. For ex-
ample, ‘+’ normally applies to both integers and reals. In Ada, users can extend this over-
loading so that ‘+’ applies to their own data types, for example, complex numbers or matrices.
We will see an example of this later.

Two of Ada’s most important facilities are its package and its task declarations, both of
which declare modules. Tasks are distinguished from packages in their ability to execute con-
currently (in parallel) with other tasks. Modules (packages and tasks) are the basic compo-
nents of which Ada programs are constructed.

Each module forms a disjoint environment that can communicate with other modules
through well-defined interfaces. To accomplish this, the declaration of a module is broken
down into two parts: a specification, which describes the interface to that module, and a body
or definition, which describes how the module is implemented. Some of the other declara-
tions can also be expressed in this two-part way. The specification of a package contains the
specifications of the names (procedures, types, etc.) supplied by the package; the body of
the package contains the bodies or definitions of these names. The purpose of this structure
is to implement the information-hiding principles you read about earlier and that you will
learn more about later in this chapter.

Ada is designed to permit a conventional compiled implementation. Typically, an Ada
compiler would be divided into four subsystems:

1. Syntactic analyzer
2. Semantic analyzer
3. Optimizer

4. Code generator

The syntactic analyzer (parser) is conventional and only moderately more complicated than
an analyzer for Pascal. Some interactive Ada systems replace the syntactic analyzer with a
syntax-directed editor, which directly generates the parse tree to be used by the semantic an-
alyzer. The semantic analyzer performs type checking, as in Pascal, and processes some of
Ada’s more complicated features, such as generic declarations and overloaded operators (dis-
cussed later). The complexity of these features makes Ada’s semantic analyzer much larger
and more complicated than Pascal’s. The result of the semantic analyzer is a program tree
that is passed to a conventional optimizer and code generator.

7.3 DESIGN: DATA STRUCTURES AND TYPING

The Numeric Types Are Generalized

Ada’s integer types are essentially like those of Pascal, including the ability to use a range
constraint to limit the set of permissible values; for example,
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type Coordinate is range -100 .. 100;

Arithmetic on integers is exact and essentially the same as that in FORTRAN, Algol-60, and
Pagcal.

Ada goes far beyond Pascal’s simple provision of a real data type: It provides two classes
that provide approximate arithmetic on real numbers—the floating-point ppes and the fived-
point types. We will investigate the floating-point types first since they are the more familiar.

The declaration
1.0el0;

type Coefficient is digits 10 range -1.0el0
~defines Coefficient to be a floating-point type with at least 10 digits of precision and

able to accommodate numbers in the specified range. If the target computer provides arith-
metic of several different precisions (such as single and double precision), then the compiler
can select the appropriate precision on the basis of the floating-point constraint.

Ada specifies that each implementation must provide a predefined type Float that cor-
responds to the machine’s usual precision. The types Short_Float and Long_Float
may also be predefined if they are supported by the implementation, although the use of these
types compromises program portability. This also contradicts HOLWG’s goal of having no
dialects of Ada.! Programmers are encouraged to use the floating-point constraint (i.e., the
digits specification) rather than these predefined types so that their programs will be more
machine independent. By using a digits specification such as the one above, program-
mers state the precision they want and leave it to the compiler to determine the machine rep-
resentation that they need. This is impossible if programmers use machine-dependent types
such as Float and Long_Float. Unfortunately, programmers frequently do not know the
precision they need; further, there is an unfortunate tendency for programmers to write the
precision specification that they know will get them a particular representation on a partic-
ular implementation. This was the experience in PL/I, where programmers wrote BINARY
FIXED(31), not because they wanted numbers of this precision, but because this will be
represented as one 32-bit word on an IBM-360. This defeats the entire purpose of these ma-

chine-independent specifications.
Floating-point constraints illustrate the Preservation of Information Principle.

The Preservation of Information Principle
The language should allow the representation of information that the user might know
and that the compiler might need.

In other words, if users know their requirements at the more abstract level (number of dig-
its required), they should not be required to state them at the more concrete level (number
of words required) since this puts into the program machine-dependent design decisions that
are better left to the compiler.

Arithmetic on floating-point numbers is conventional: Operations are effectively per-
formed at the maximum available precision and then rounded to the precision of the operands.

! The same comments apply to Ada’s “optional” types Short_Integer and Long_Integer.
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Whereas the floating-point types provide approximate arithmetic with a relative error
bound, the fixed-point types provide it with an absolute error bound. Fixed-point arithmetic
had been the rule on early computers; it fell into disuse in scientific applications after the in-
troduction of floating-point hardware (see Chapter 1). It is still used in languages for com-
mercial programming (e.g., COBOL), where an absolute bound on the error is required (e.g.,
one cent). Fixed-point numbers have been included in Ada because they are used by many
of the peripheral devices incorporated in embedded computer systems (e.g., analog-to-digi-
tal converters). Fixed-point types are specified using a fixed-point constraint, for example,

type Dollars is delta 0.01 range 0.00 .. 1.000_000.00;

The delta specifies the absolute error bound; in this case, values of type Dollars will be
exact multiples of 0.01. For instance, the number 16.75 would be stored as the binary equiv-
alent of 1675 since 16.75 = 1675 X 0.01. The minimum number of bits required to store a
fixed-point type is just the logarithm of the number of values to be represented, for example,

log, [1 + (1000000 — 0)/0.01] = log, 10® = 26.6

Therefore, 27 bits are required. Converting an integer value to a fixed-point value requires
division by the delta value; for example, Dollars (2.0) will result in the binary rep-
resentation of 2/0.01 = 200. If the delta is a power of 2, then it is a simple optimization
to replace this operation by a left shift. For instance, if Volt is defined

type Volt is delta 0.125 range 0.0 .. 255.0;

then the conversion Volt (20) is accomplished by a left shift of three (since 0.125 = 1/g).
For this reason, the Ada definition permits the compiler to choose an actual delta that is
less than the specified delta but a power of 2 to make the conversion more efficient.

The arithmetic rules for fixed-point types are more complicated than those for integers
and floating-point types. This is particularly true for multiplication and division. For instance,
if VF is a variable of fixed-point type F and VI is an INTEGER variable, then VF*VI and
VI*VF are both type F and the assignment VF := VF*VI is permitted. However, if VG
is a variable of any fixed type (including F), then VF*VG is considered to be of type “uni-
versal fixed,” that is, a fixed-point number of maximum accuracy. It is then illegal to assign
VF := VF*VG because the types do not match. An explicit type conversion must be used
— VF := F(VF*VG). Division obeys similar rules. These unintuitive rules are an almost
unavoidable consequence of fixed-point arithmetic.

@ Exercise 7-1*: Either design a better system of fixed-point arithmetic or show that all
of the reasonable alternates are inferior to Ada’s system.

B Exercise 7-2*: We have seen that Ada provides three basic sorts of numbers. Some
other languages, such as APL, LISP, and BASIC, provide only one kind (essentially equiv-
alent to floating point) and use it for all purposes. Discuss the relative advantages and
disadvantages of these two approaches.

Constructors Are Based on Pascal’s

The data structure constructors of Pascal have been carried forward into Ada. These include
enumerators, arrays, records, and pointers (called access types in Ada). All of these have
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been varied from the Pascal model in an attempt to eliminate some of their problems. For
example, a frequent cause of errors in Pascal programs was changing the discriminant (tag)
of a variant record without initializing the corresponding fields. As we saw in Chapter 5, this
left a loophole in the Pascal type system. Ada solves this problem by stating that the dis-
criminant can be changed only by assigning a complete record value to the record, that is,
by assigning to all of the fields of that variant in one operation. In all other situations, the
discriminant is treated like a constant. This ensures that the fields that correspond to the dis-
criminant’s value are always initialized.

# Exercise 7-3*: Some languages (e.g., Algol-68) provide a discriminated union instead
of variant records. A discriminated union type is defined by a declaration such as

type Person is union (Male, Female);

This means that objects of type Person may be either Males or Females, that is, that
the set of data values subsumed by the type Person is the union of the values subsumed
by the types Male and Female. It is called a discriminated union because the language
uses a hidden discriminant (like Pascal’s discriminant in a variant record) to tell whether
a particular Person is a Male or a Female. This discriminant is automatically main-
tained by the system, therefore, it can never be wrong. Compare and contrast these two
solutions to the same problem. Are there any security differences? How about readabil-
ity and efficiency? Suggest how each could be improved or suggest a better alternative
to both.

M Exercise 7-4*: Some languages (e.g., C) provide an undiscriminated or free union; that
is, there is no discriminant, either hidden or visible. Discuss this feature in terms of the
principles of good language design.

Name Equivalence Is Used

The Ada type system is stronger than Pascal’s because of the consistent use of name equiv-
alence (which was discussed in Chapter 5, Section 5.3). Some of the inconveniences and
awkwardness of name equivalence have been mollified through the use of two new con-
cepts—subtype and derived type—that are discussed later. In its simplest terms, name equiv-
alence states that two objects are taken to have the same type only if they are associated with
the same type name. For example, in

type Person is record ID, Age: Integer; end record;
type Auto is record ID, Age: Integer; end record;

X: Person;
Y: Auto;

the variables X and Y are of different types because the associated type names, Person and
Auto, are different. The fact that the structural descriptions of these types are the same is
irrelevant. This decision is based on the principle that if programmers restate the same type
definition with a different name, it must be because they intend to use the types for differ-
ent things (as is obvious in this case).
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Ada extends the use of name equivalence to types that do not have a name, for instance,

X: record ID, Age: Integer; end record;
Y: record ID, Age: Integer; end record;

Again, X and Y have different types. The easiest way to understand this is to imagine that
the compiler invented names for these two types (such as Person and Auto) and substi-
tuted them in the declarations of X and Y. We can see that one effect of name equivalence
is to encourage programmers to name their types.

Name equivalence has been used in Ada for a number of reasons. One is the presump-
tion mentioned above that if programmers repeat a type definition, they probably did it be-
cause the types are logically different. A second reason is that the alternative, structural
equivalence, is not well defined. For example, in comparing two record types, is the order
of the fields significant? Consider the following:

type R is record X: Float; N: Integer; end record;
type S is record N: Integer; X: Float; end record;

Can a variable of type R be assigned to a variable of type S? There are also other questions
that must be answered: Are the names of the fields significant? For example, are these com-
patible types?

type R is record X: Float; N: Integer; end record;
type S is record A: Float; I: Integer; end record;

They are represented in the same way, but it is not obvious that it makes sense (in terms of
the program’s purpose) to assign one to the other.

There is no general agreement on which definition of structural equivalence is best, and
almost all of the definitions are difficult for compilers to implement. Thus, name equiva-
lence seems preferable.

B Exercise 7-5*: Suppose we adopted the version of structural equivalence that ignores
the order of fields. Describe the code a compiler would have to generate for a record as-
signment. Contrast this with the case in which the order of fields is significant.

B Exercise 7-6*: Do you agree with the preferability of name equivalence? Defend ei-
ther name or structural equivalence or propose and defend an alternative.

Subtypes Are Clarified

One of the reasons that name equivalence has not been adopted by previous languages is that
it is often foo restrictive. Consider the following declarations:

N: Integer;
type Index is range 1..100;
I: Index;

Since Index and Integer have different names, pure name equivalence would consider
them different, unrelated types. Hence, the variables I and N have different types, and it is

-
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illegal to assign T to N, N := I. This is certainly unintuitive since the type Index is just
a subset of the type Integer. The situation is even worse than this; it is no longer possi-
ble to write I + 1 because the ‘+’ operation is defined on Integers, not Indexes. This
is clearly unacceptable.

Ada solves this problem by stating that a constraint, such as range 1..100, defines
a subtype of some base type, Integer in this case. Subtypes inherit all of the operations
defined on the base type, so T + 1 is still legal. Subtypes are also compatible with the base
type and other subtypes of the base type, so assignments like N: =T and even I:=N (with a
run-time constraint check) are legal.

This implicit definition of subtypes is supplemented by an explicit mechanism for de-
claring subtypes. The declaration

subtype Index is Integer range 1..100;

explicitly declares Index to be a subtype of Integer that inherits all of the operations
and properties of the base type. (Notice that we must specify Integer in the subtype
declaration and that we cannot specify it in the type declaration. Syntactic irregularities
like this confuse programmers.)

A subtype can be further constrained:

subtype Little_Index is Index range 1..10;

Then any object of type Little_Index will also be an Integer, an Index, and any
other subtype of Integer (if it is in the appropriate range).

Why are there apparently two methods of introducing subtypes? It seems that the sub-
type declaration will handle all situations and hence that the subtype interpretation of cer-
tain type declarations is superfluous. The only explanation seems to be that these type
declarations have no other useful meaning. In this situation Ada supplies a useless duplica-
tion of function.

Derived Types

Ada provides yet another facility for declaring types, derived types. An example of a derived
type declaration is

type Percent is new Integer range 0..100;

This defines a new type, Percent, that is different from Integer, Index, and every
other type. In particular, it is not possible to assign a Percent variable to an Index vari-
able or vice versa. This seems useful since we would not want to use Percents and In-
dexes interchangeably; they mean different things. What makes a derived type different is
that it inherits all of the operations, functions, and other attributes (built-in or user defined)
of the type from which it is derived. It is as though every subprogram declaration contain-
ing Integer or Integer range O0..100 were copied with these types replaced by
Percent. Thus, the type Percent inherits an entire set of subprograms just like, but dis-
tinct from, those defined on Integers. This allows a user to define a new type that is ab-
stractly different from the type it is derived from, yet still make use of all of the operations
defined on the original type. In fact, it is possible to convert explicitly between derived types




254

MODULARITY AND DATA ABSTRACTION: ADA

and their parent types. For instance, Percent (N) converts an Integer value N to a Per -
cent value.

Constraints Replace Subranges

The Pascal subrange type constructor has been replaced in Ada by a more general facility—
the constraint. A constraint is a mechanism for restricting the allowable set of data values
in a type without restricting the operations applicable to those data types. Thus, a constraint
defines a subtype of a given type. The simplest example of a constraint is the range con-
straint that we have already seen. For example, Integer range 1..100 restricts the
integers to numbers in the range 1-100 and Character range ‘A’..’Z’ restricts the
characters to be alphabetic. Range constraints have the same implementation costs and ben-
efits as Pascal subrange types. The Ada constructs are more general because expressions that
must be evaluated at run-time are allowed in the constraint. In these cases some checking
must be done at run-time that could otherwise be done at compile-time.

We have also seen accuracy constraints (e.g., Float digits 10 range
-le6..le6 and Dollars delta 1 range 1..10) that are applicable to the ap-
proximate numeric types. A third type of constraint is the discriminant constraint. Suppose
Person is a variant record whose discriminant can take on two values—Male and Fe-
male. Then Person (Male) is an example of a discriminant constraint; this is the type of
Person records in which the discriminant has the value Male. Again, what we have done
is restrict the set of possible values; Person (Male) is a subtype of Person. If an ex-
pression of type Person is assigned to a variable of type Person (Male), then a run-time
check will be necessary to ensure that the discriminant has the value Male. This is exactly
analogous to the check required by a range constraint.

Index Constraints Solve Pascal’s Array Problem

Recall (Chapter 5, Section 5.3) that there was a serious problem resulting from the interac-
tion of Pascal’s array types and its strong typing facility. This problem is solved by the fourth
type of constraint—the index constraint. Suppose we wish to write a general-purpose pro-
cedure to sum the elements of a real array. To do this we define a type Vector that is an
array of Float numbers with the indices unconstrained:

type Vector is array (Integer range < >) of Float;

This declaration means that each Vector object is a Float array whose index type is some
subrange of Integer. Therefore, to declare a Vector object, this range must be specified
as in

Data: Vector(1l..100);

Days: Vector(l..366);

Data and Days are Vectors of lengths 100 and 366, respectively. Ada avoids Pascal’s
problem by allowing programmers to use the unconstrained type in a formal parameter spec-
ification, for instance,

function Sum (V:Vector) return Float is
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The Ada type system will allow both Data and Day's to be passed to Sum; i.e., Sum (Data)
and Sum (Days) are legal because they are of the same type, Vector (remember, a con-
straint defines a subtype and subtypes are compatible with their parent type). The compiler
must pass the actual bounds of the Vector as hidden parameters to Sum. Within Sum it is
possible to access these hidden parameters by V‘First and V’Last. Further, V' Range
stands for V' First .. V'Last, so the loop to sum the array could be written

for I in V'’'Range loop
Total := Total + V(I);
end loop;

It is also possible to declare variables to be of type Vector, in which case the actual bounds
of the Vector have to be stored along with its contents.

B Exercise 7-7: Discuss how index constraints simplify string manipulation.

Enumerations Can Be Overloaded
Recall that Pascal did not allow an overlap in the elements of enumeration types; for example,

type Primary is (Red, Blue, Green);
type Stop_Light is (Red, Yellow, Green);

would be illegal in Pascal. Ada does not have this restriction; the above type declarations
are legal as they stand. This seems to introduce ambiguities into the program because Red
can mean either the Primary value Red or the Stop_Light value Red; we say that the
identifier Red is overloaded because it has two or more meanings. Ada uses context to de-
termine which Red is meant. For example, if C has been declared to be a Primary vari-
able, then C := Red is unambiguous; both the compiler and the human reader can see that
it is the Primary Red that is meant. There are some circumstances (connected with over-
loaded procedures discussed later) in which the correct type cannot be determined from con-
text; in these situations programmers are required to specify which they mean—
Primary (Red) or Stop_Light (Red). In some cases, even though the use of an enu-
meration literal is not ambiguous, it may be very difficult for both the human and the com-
piler to tell what is meant; these will become apparent in Section 8.1. Why do the design-
ers of Ada allow this confusing and potentially ambiguous situation? One reason is
convenience; it is normal in natural languages for one word to have several meanings, such
as a primary color and the state of a stop light. Another reason results from the fact that in
Ada character sets are considered enumeration types. For instance, a character set could be
defined by

type DisCode is (’a’, 'B’, ’‘C’, 'D’, 'E’, 'F’, 'G’, 'H’,
‘1, 'Jg’, 'K’, ‘L', 'M’, 'N’, ‘O’, ‘P’, 'Q', 'R’', 'S’,
‘TY, ‘U, 'V, ‘W, ‘X', 'Y’, 'z, '0', 1’7, 27, 37,
"4v, UBY, 16, TY, U8, 9N, T, =t rr);

Since the same character, say ’A’, will normally appear in several different character sets,
overloading of enumeration literals seems to be implied.
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B Exercise 7-8*: Do you agree with the designers of Ada on the issue of overloaded enu-
merations? Discuss alternates, such as (1) the Pascal solution, (2) other treatments of char-
acter sets, and (3) always requiring the type to be specified [e.g., Primary (Red) ]. Sug-
gest additional solutions to this problem.

7.4 DESIGN: NAME STRUCTURES

The Primitives Are Those of Pascal

The primitive name structures of Ada are based on the Pascal model; there are constant, vari-
able, type, procedure, and function declarations, with improvements in almost all of these.
There are also task and package declarations.

One of the simplest declarations is the variable declaration, which, in contrast to Pas-
cal’s, allows initialization, for example,

Approximation: Float := 1.0;

The consistent use of initialization eliminates a common error: using an uninitialized vari-
able. It also causes a program to be more readable by making the initialization of the vari-
able obvious. The initial value is not restricted to being a constant. It can be an expression
of any complexity, which is evaluated when the block or procedure in which it occurs is en-
tered. This is advantageous since it permits the same construct to be used for all initializa-
tion, regardless of whether or not the initial value is a constant.

The constant declaration is a modified form of a variable declaration. For instance,

Feet_Per_Mile: constant Integer := 5280;
PI: constant := 3.14159_26535_89793

A constant declaration is interpreted exactly like a variable declaration except that its value
cannot be changed after its initialization at scope entry-time. It is therefore considerably more
general than a Pascal constant because its value can be computed during the execution of
the program and may differ in different instances of the scope. This is a useful facility and
aids program maintenance. (Recall our discussion of MaxData in Section 5.4, p. 194.)
Notice in the example above that the type of the constant (Pi) is not specified in the
declaration. Ada 83 allows the type to be omitted if it is a numeric type, and if the expres-
sion on the right “involves only literals, names of numeric literals, calls of the predefined
function ABS, parenthesized literal expressions, and the predefined arithmetic operators.”?
This unusual feature is included to allow constants of type universal integer and universal
real to be named. These types have the maximum possible precision and are not normally
accessible to programmers. The benefit of this kind of declaration is to permit the program-
mer to name a type- and precision-independent numerical constant. The cost of this feature
is the above-quoted unintuitive and difficult to remember rule. The corresponding rule (defin-
ing a static expression) in Ada 95 is even more complex, comprising several dozen rules.

2 Reference Manual for the Ada Programming Language, July 1980, p. 3-3.
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B Exercise 7-9*: The Simplicity and Regularity Principles are violated by the restrictions
on the definition of universal integer and universal real constants. Try to develop an al-

ternative solution that is simpler and more regular.

Specifications and Definitions

In our discussion of the structural organization of Ada, we saw that information hiding was
supported by the ability to divide declarations into two parts:

1. One that defines the interface
2. One that provides an implementation

Most of the declarations in Ada can be broken into these two parts. For instance, a constant
can be specified by

Max_Size: constant Integer;

This specifies that Max_Size is the name of an Integer constant but does not define its value.
A “deferred” constant like this would usually be used as part of the specification of a pack-
age; this way a package can provide a constant without defining its value to be part of the
interface. This constant can be implemented, that is, given a value, by a conventional con-

stant definition:
Max_Size: constant Integer := 256;

This definition would normally appear in the private part of the package. We will see the way
in which these specifications and definitions are used in our discussion of packages below.

Subprograms Can Be Specified

Since subprograms (procedures and functions) form most of the interface to a package, sub-
program specifications are very important. For instance, the interface specification

procedure BinSearch (T: Table; Sought: Float;
Location: out Integer; Found: out Boolean) ;

tells the reader and the compiler that BinSearch is a procedure with four parameters: The
first two are input parameters of type Table and Float, respectively, and the third and
fourth are output parameters of type Integer and Boolean, respectively. This is the in-
terface between the procedure BinSearch and its callers, that is, the information that must
be known to both the users and the implementer of this procedure. It is essentially a contract
between the users and the implementer. A specification such as this would usually appear as
part of the interface specification of a package.

A definition of BinSearch that meets the above specification appears in Figure 7.1.
We can see that the definition repeats the specification; this provides useful redundancy and
helps readability. It should be clear that this entire structure supports information hiding by
embedding the important design decisions in the body of the procedure.
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Global Variables Considered Harmful

In the early 1970s, many programming language researchers were beginning to question the
block structure of Algol-60 and other second- and third-generation languages. While it was
agreed that such languages had many desirable characteristics, they were also seen to cause
problems in large programs. Some of these were described by Wulf and Shaw (at Carnegie-
Mellon University) in a paper in Sigplan Notices (1973) called “Global Variable Considered
Harmful.” In this paper they identified four problems with block structure:

* Side effects

¢ Indiscriminate access

* Vulnerability

* No overlapping definitions

We describe each of these problems below.

Side Effects

Computer scientists had recognized for many years the danger of side effects, a change to a
nonlocal variable by a procedure or function. For example, suppose we have the following
Algol-60 procedure:

integer procedure Max (x, VY); integer x, v
begin
count := count + 1;
Max := if x > y then x else y;
end;

This procedure computes the maximum of two integers; it also has a side effect of incre-
menting the variable count (which we assume has been defined in an outer block). We may
suppose that the programmer’s intention is to determine the number of times the Max pro-
cedure is invoked. What is the matter with such a side effect? It makes it very difficult to
determine the effects of a procedure from the form of a call of the procedure. For example,
if we see

length := Max (needed, requested);

it is immediately obvious that this call on Max involves the variables needed, requested,
and length. These are clearly part of the interface to the Max procedure. We would never
guess that this procedure modifies count without looking at an implementation of the pro-
cedure. To see the problems this can cause, imagine we were looking through a program to
find all the places count was modified because it was connected with a bug. We would
very likely overlook the line shown above because it modifies count without ever men-
tioning it. Furthermore, if the procedure Max is predefined in some library, it may not even
be possible to look at its definition. This is a potential maintenance program. Furthermore,
it introduces some semantic problems. Consider the invocation,

count := 10;
length := Max (count, 10);

L.éh
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The procedure Max actually modifies one of its actual parameters. The exact value returned
depends on whether Max increments count before or after it tests its parameters. Also,
length will be set to 11 if the parameters are passed by name (as in our definition) and to
10 if passed by value. All of these problems arise because the global variable count is a
hidden part of the interface to Max. It is really both an input and output parameter but does
not appear in the parameter list.

FORTRAN allowed side effects through use of output parameters and COMMON blocks.
For the most part, however, they could be avoided by avoiding COMMON. Unfortunately, side
effects are a natural consequence of block structure since being nested inside a block implies
that all variables declared in that block are visible, and hence alterable. We summarize the

problems of side effects as follows:
Side effects result from hidden access to a variable.

B Exercise 7-10*: Describe some programming situations in which side effects are use-
ful. How could the same thing be accomplished without them? Discuss the trade-offs.

Indiscriminate Access

Closely related to side effects is the problem of indiscriminate access, that is, that program-
mers cannot prevent inadvertent access to variables. We will consider an example of this.
Suppose we wanted to provide a stack to be used in an Algol-60 program. We would prob-
ably structure our program like this:

begin
integer array S[1:100];
integer TOP;

procedure Push(x); integer x;

begin TOP := TOP + 1; S[TOP] := x; end;
procedure Pop(x); integer x;

begin Pop := S[TOP]; TOP := TOP-1; end;
TOP := O0;

uses of Push and Pop
end

The variable S, which is the stack, must be declared in the same block as Push and Pop so
that it is visible from the bodies of Push and Pop. For the Push and Pop procedures to
be visible to their users, they must be declared in a block that contains all uses. This means
that S is visible to users of Push and Pop and that these users may inadvertently (or in-
tentionally!) use or alter the value of S without going through the Push and Pop proce-
dures. This situation is pictured in Figure 7.2.

There is no way to arrange the declarations in a block-structured language so that in-
discriminate access cannot occur. The problem with this kind of direct access is that it cre-
ates a maintenance problem. There is no guarantee that all users of the stack go through the
Push and Pop procedures, and there may be uses that depend on the details of the way the
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S Figure 7.2 Indiscriminate Access

Push
Pop

User

stack is implemented. Therefore, it will not be possible to change this implementation (e.g.,
to make it more efficient or correct a bug) without chasing down every reference to S. If we
were guaranteed that all users of the stack went through Push and Pop, then we would only
have to modify these to change the implementation of the stack; maintenance would be greatly
simplified. Unfortunately, there is no way to accomplish this in a block-structured language.
We summarize the problem of indiscriminate access:

The problem of indiscriminate access is the inability to prevent access to a variable.

B Exercise 7-11: Show that indiscriminate access to S cannot be prevented by suitable
arrangement of the block structure.

Vulnerability

We saw that the problem of indiscriminate access was that under certain circumstances it
was impossible to prevent access to a variable. Vulnerability is the dual problem: Under cer-
tain circumstances it is impossible to preserve access to a variable. The basic problem of
vulnerability is that new declarations can be interposed between the definition and use of a
variable. Let’s see what this means. Suppose we have a very large Algol program that has
this structure:

begin
integer x;
..... many lines of code. . . . .

begin
..... many lines of code . . . . .
X o= x o+ 1; ...
end;
end;

We will suppose that there are so many lines of code between the definition and use of x
that they fill many pages. Let’s further suppose that in the process of maintaining this pro-
gram we decide that we need a new local variable in the inner block; we pick x, not realiz-
ing that it is already used in that block. This is the result of our modification:

A
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begin
integer x;
..... many lines of code. . . . .
begin real x; comment NEW DECLARATION;
..... many lines of code . . . . .
X o= x + 1;...

We can see what has happened; access to the outer declaration of integer x has been blocked
and the statement x := x + 1 now refers to the new real variable x. The new declara-
tion of x has been interposed between the original definition of x and its use. This is illus-
trated in Figure 7.3. We can state the problem of vulnerability in the following way: A pro-
gram segment (‘x := x + 1’ in this case) cannot control the assumptions under which
it executes (the integer declaration of x, in this case). Summarizing,

Vulnerability means a program segment cannot preserve access to a variable.

No Overlapping Definitions

The last problem with block structure that we will discuss is that it does not permit over-
lapping definitions. The need for these arises from attempts to modularize large systems.
Suppose we have a large software system composed of four modules P1, P2, P3, P4: these
may be procedures or blocks. Also suppose that we want P1 and P2 to communicate through
a shared data area (say, an array) DA and that we want P2, P3, and P4 to communicate
through a shared data area DB. This situation is illustrated in Figure 7.4.

Since DA must be visible to both P1 and P2, it must be declared at the same or sur-
rounding level to these modules. Similarly, DB must be declared at the same or surrounding
level to P2, P3, and P4. Therefore, our program must be structured as shown in Figure 7.5.
We can see that P1 has access to DB, and P3 and P4 have access to DA. This access is not
needed and spreads knowledge of implementation decisions where it is not needed. This can

x| integer x| integer Figure 7.3 Vulnerability
*
\
\
\
AY
X | real

xi=x+1
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Figure 7.4 Overlapping Definitions

P2

( DA DB

P4

P3
P1

create both a maintenance and a security problem. The problem of no overlapping defini-
tions is summarized as follows:

No overlapping definitions means we cannot control shared access to variables.

Attributes of an Alternative

Wulf and Shaw identified several attributes that they thought an alternative to block struc-
ture should satisfy:

1. The default should not be to extend the scope of a variable to inner blocks. That is,
there should be no implicit inheritance of access to variables from enclosing blocks. Side ef-
fects, indiscriminate access, and vulnerability can all be seen to be results of this implicit in-
heritance, although these problems are not solved by just eliminating this feature.

2. The right to access a name should be by the mutual consent of the creator and ac-
cessor of the name. That is, the creator (definer) of a name should be able to determine who
can access the name and who cannot, and potential users of the name should never have the
name imposed on them if they do not want it. This would solve the problems of indiscrim-
inate access, vulnerability, and no overlapping definitions.

3. Access rights to a structure and its substructures should be decoupled. This means
that the ability to access some structure (e.g., a stack) should not imply the ability to access

begin DA
array DA[...]; DB
array DB[...]; P1
procedure P1; R
proceudre P2; ceed
procedure P3; e
procedure P4; e

end

Figure 7.5 No Overlapping Definitions
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the mechanism that implements it (e.g., the top pointer of the stack or the array containing
its elements). This problem, which is related to indiscriminate access, can severely compli-
cate maintenance.

4. It should be possible to distinguish different types of access. For example, it should
be possible to give some users read-only access to a data structure and others read-write ac-
cess. This helps to solve the side effect and vulnerability problems.

5. Declaration of definition, name access, and allocation should be decoupled. In block-
structured languages these functions are usually closely connected. For instance, by declar-
ing a variable in an Algol block (1) the name is defined by its appearance in the declaration,
(2) name access is determined by its occurrence in the block since that block and all inner
blocks implicitly inherit access to the variable, and (3) storage allocation and deallocation
are determined since they will occur simultaneously with entry to and exit from the block.
These are really three orthogonal (i.e., independent) functions. In a few cases, languages at-
tempted to decouple these functions. Algol decouples name definition and access from allo-
cation with its own variables; Pascal accomplishes the same with its dynamically allocated
storage (new and dispose). Proper separation of these functions would help to solve most
of the problems of block structure. We will see later that although Ada has not abandoned
block structure, its packages and other related mechanisms eliminate many of the block’s
shortcomings.

Parnas’s Principles

At about the same time that Wulf and Shaw were doing their work, Parnas enunciated two
important principles of information hiding. In the introduction to this chapter, we discussed
the general idea of information hiding: Each difficult design decision should be hidden in-
side a module. This rule determines what should be in each module. The two principles we
will see next guide us in designing the interfaces between modules.

Parnas’s Principles

1. One must provide the intended user with all the information needed to use the mod-
ule correctly and nothing more.

2. One must provide the implementor with all the information needed to complete the
module and nothing more.

Thus, the user of a module does not know how it is implemented and cannot write programs
that depend on the implementation. This makes the module more maintainable since imple-
mentors know exactly what they can and cannot change without impacting the users. Simi-
larly, implementors have no knowledge of the context of use of their module, except that
provided in the interface. This simplifies maintenance of programs that use the module be-
cause programmers know what they can safely change and what they cannot. We will see
that the Ada package construct directly supports Parnas’s principles.
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Packages Support Information Hiding

The Ada construct that supports the information-hiding principles and controls access to de-
clarations is the package. The declaration of a package is broken down into two parts—an
interface specification and a body. The interface specification defines the interface between
the inside and the outside of the package; hence, it is that information about the package that
must be known to the user; and that information about the way it will be used that must be
known to the implementor. The package specification is effectively a contract between the
user and the implementor of the package. A package specification has the following form:

package Complex_Type is
. . . specification of public names . . .
end Complex Type;

Between the brackets of the package specification (package-end), all the specifications
of the public names (i.e., the names in the interface) are written. A partial specification of a
package that provides complex arithmetic is shown in Figure 7.6.

Figure 7.6 shows that the package Complex_Type provides a type (Complex), a con-
stant (I), and several functions (Re, Im), and that it overloads the arithmetic operators. The
function definitions are specified in the usual way: The types of the parameters and the re-
turned value are specified.

The type Complex is also listed in the interface, but it is defined to be a private type.
This means that although the name Complex is visible (and hence may be used in object
declarations, parameter specifications, etc.), the internal structure of Complex numbers is
hidden from users of the package. If this were not done, it would be possible for users to ac-
cess directly the components of Complex numbers without going through the Re and Im
functions. This would interfere with later maintenance if the implementor decided to use a

package Complex_ Type is
type Complex is private;
I: constant Complex;

function ”+” (X,Y : Complex) return Complex;
function ”"-” (X,Y : Complex) return Complex;
function ”*” (X,Y : Complex) return Complex;
function ”/” (X,Y : Complex) return Complex;
function Re (X : Complex) return Float;
function Im (X : Complex) return Float;
function ”"+” (X : Float; Y : Complex) return Complex;
function ”*” (X : Float; Y : Complex) return Complex;
private
type Complex is
record Re, Im : Float := 0.0; end record;
I : constant Complex := (0.0, 1.0);

end Complex_ Type;

Figure 7.6 Specification of Complex Arithmetic Package
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different representation for Complex numbers. Notice that there is an appendage to the pack-
age specification introduced by the word private. This private part of the package in-
cludes a definition of the Complex type that specifies its representation. What is this in-
formation doing in the specification? This is a concession that the Ada designers have been
forced to make so that packages will not be too difficult to compile. Users of the
Complex_Type package will want to declare objects of type Complex, which will require
the compiler to allocate storage for these records; thus, the compiler must know the repre-
sentation of Complex numbers. This is especially necessary if the program using
Complex_Type and the package defining it are compiled separately; under these circum-
stances only the specification of Complex_Type is available to the compiler when it is
compiling the program using the package.

We can see that this package also defines a public constant, I, defined as a deferred
constant. Its value must be deferred because it depends on the representation of Complex
numbers, which is private. The actual definition of the constant is given in the private part
of the specification along with the type definition.

The package body, which is known only to the implementor, gives the definition of each
name mentioned in the specification. It may also declare any local procedures, functions,
types, and so on, needed by this implementation; all of these are private. Part of the imple-
mentation of Complex_Type is shown in Figure 7.7.

package body Complex_Type is

function ”+” (X,Y : Complex) return Complex is
begin
return (X.Re + Y.Re, X.Im + Y.Im);
end;
function ”*” (X,Y : Complex) return Complex is
RP: constant Float := X.Re*Y.Re - X.Im*Y.Im;
IP: constant Float := X.Re*Y.Im + X.Im*Y.Re;
begin
return (RP,IP);
end;
function Re (X : Complex) return Float is

begin return X.Re; end;

function Im (X : Complex) return Float is
begin return X.Im; end;

function ”"+” (X : Float; Y : Complex) return Complex is
begin

return (X + Y.Re, Y.Im);
end;

—-- other definitions
end Complex_Type;

Figure 7.7 Partial Implementation of a Complex Arithmetic Package
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B Exercise 7-12: Complete the definition of the package Complex_Type.

B Fxercise 7-13*: We have seen that the private part of a package specification mixes
representation information important only to the implementor with the interface informa-
tion needed by the user. Describe an alternative that does not mix things up this way but
still allows a compiler to allocate storage for objects of private types. You may alter Ada’s
package declarations or describe an alternative method for the compiler to get the needed
information.

Name Access Is by Mutual Consent

We have seen that the implementor of a package can control, by the placement of the dec-
larations in the public part or the private part of the package, which names can be accessed
by a user of the package. Anything placed in the specification is public and potentially ac-
cessible. A user gains access to the publics of a package with a use declaration, as shown:

declare
use Complex_Type;
X, Y : Complex;

7Z : Complex := 1.5 + 2.5*I;
begin

X := 2.5 4+ 3.5*I;

Y := X + Z;

Z := Re(Z) + Im(X)*I;

if X = Y then X := Y + Z;

else X := Y*Z; end if;
end;

The use declaration makes all of the public names of the package visible throughout the
block in which it appears. We can see that this permits using all of the types (Complex),
functions (Re, +), constants (I), and so forth, as though they were built in. (In fact, the
Ada language is defined as though the “built-in” types are defined in packages that are
automatically used for all programmers.) Thus, name access is by mutual consent: The
package implementor determines which attributes are to be public and the package user
decides whether to import the attributes of a particular package. In fact, Ada provides
even more control to package users since, if they do not need all of the names defined
by a package, they can select just the ones they want. This is done with a dot notation
similar to Pascal’s (e.g., Complex_Type. I) or by a variant of use that we will not dis-
cuss here.

A compilation comprises one or more “library items,” which are often packages. Whether
they are part of the same compilation or not, they are not mutually visible without explicit
declaration. For one item to be visible to another, the latter must have a context clause men-
tioning the former. For example, a module needing to use complex numbers should be pre-
ceded by with Complex_Type. (Then the names can be accessed by the dot notation,
e.g., Complex_Type.Re; they will be directly visible, without using the dot, if the with
is followed by use Complex_Type.)
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Packages as Libraries

We have just seen how to use a package to define an abstract data type. There are also many
other ways that packages can be used to modularize programs; some of these are discussed
in the following sections. One of the simplest, which is really a degenerate form of an ab-
stract data type, is a library. Suppose we wished to define a P1ot library that provided sub-
programs for plotting. This can easily be specified as a package:

package Plot is

type Point is record X,Y : Float; end record;
procedure Move_To (Location : Point);

procedure Line (From, To : Point);

procedure Circle (Center : Point; Radius : Float);

procedure Fit (Data : array (Integer range < >) of Point);
function Where return Point;
end Plot;

Then, if users wish to do some plotting in a module, they only have to include awith Plot
request in the context clause preceding that module. Of course, the private part of the pack-
age may include the definitions of constants and subprograms that are needed by the imple-
mentation but are hidden from users. You can see that a library is just a package that does
not contain any data structures.

Packages Permit Shared Data Areas

We have just looked at packages that contain procedures but no data structures; we will now
look at the opposite—packages that contain data structures but no procedures. For example,
suppose we wanted a buffer to be used for communicating characters between two subpro-
grams. This could be done by the declaration

package Communication 1is

In_Ptr, Out_Ptr : Integer range 0..99 := 0;

Buffer : array (0..99) of Character := (0..99 => ' ’);
end Communication;

(The declaration of Buf fer makes it an array initialized to all blanks.) Given this defini-
tion of Communication, two procedures P and Q can use it for communication by in-
cluding a use for the package:

with Communication; use Communication;
procedure P is

use Communication;
begin

Buffer (In_Ptr) := Next;
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In_Ptr := (In_Ptr + 1) mod 100;

end P;

with Communication; use Communication;
procedure Q is

use Communication;
begin

C := Buffer (Out_Ptr);

end Q;

This way of using packages is similar to the way labeled COMMON is used in FORTRAN. It
also solves the problem of overlapping definitions discussed in the section on encapsulation;
only those subprograms that need access to Buf fer will have with Communication;
use Communication.

Packages Can Be Data Structure Managers

When we first saw the idea of information hiding, we said that each module should encapsulate
one difficult design decision; we also said that the choice of the representation for a data struc-
ture was often such a difficult decision. Therefore, a common use of Ada packages is to en-
capsulate a data structure and provide a representation independent interface for accessing it.

We can take a stack data structure as a common case. When we design a data structure,
one of the first questions we must ask is: “What operations are to be available on this data
structure?” We will immediately come up with Push and Pop; there are others, however.
What will happen if we try to Pop an element from an empty stack? Surely we will gener-
ate an error, but it is preferable for the users to have an Empty test so that, if they are un-
sure about whether the stack is empty, they can test it before they do a Pop. We may also
want a Full test to determine if there is any room in the stack before we do a Push. Fi-
nally, we will need an error signal or exception, Stack_Error, which is raised if some-
one does a Pop from an empty stack, and so forth. We also need to know the sort of things
that the stack can hold; we will assume they are integers. We now have the information nec-
essary to specify the Stackl package:

package Stackl is
procedure (Push (X : in Integer);
procedure Pop (X : out Integer);
function Empty return Boolean;
function Full return Boolean;
Stack_Error : exception;

end Stackl;
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The difficult design decision—whether to represent the stack as an array, linked list, or some-

thing else—is hidden in the package.
Once the package has been implemented, and made accessible if necessary by with, it
can be used as before. For example, if we intend to use the stack over a large part of the

program, we can make its names available with a use:

declare

use Stackl;

I, N : Integer;
begin

Push(I);
Pop (N) ;

if Empty then Push(N); end if;

end;

We can also use the “dot” notation to select a public attribute from Stackl without using
the use, for example,

Stackl.Push(I);
Stackl.Pop (N) ;
if Stackl.Empty then Stackl.Push(N); end if;

This allows users of the package to be as selective as necessary about the names imported
from Stackl; again, name access is by mutual consent.

How would we go about implementing the stack package? For the sake of this exam-
ple, we will assume that we have decided on an array representation for the stack. The im-
plementation of the stack package is shown in Figure 7.8. We can see that this imple-
mentation of Stackl has two private names: ST, the array that holds the stack elements,
and Top, the pointer to the top of the stack. These are completely invisible and inacces-
sible to users of the stack; any attempt to access them, for example, by Stack.ST or
Stack.Top, will be diagnosed by the compiler as a program error. The raise
Stack_Error statement is an example of an exception. Exceptions are discussed later

(Chapter 8).

B Exercise 7-14*: Write a package body that implements Stack1 using linked lists.
To do this you will need to know a few details about Ada: (1) If T is a type, then ac-
cess T is the type of pointers to things of type T. (2) If T is a record type, then new
T(X1, ..., Xn) allocates an instance of that record type and returns a pointer to
that record. What is the meaning of the Full function in a linked implementation of
stacks?




270 MODULARITY AND DATA ABSTRACTION: ADA

package body Stackl is Figure 7.8 Body of Simple Stack
ST : array (1..100) of Integer; Package
Top : Integer range 0..100 := O;
procedure Push (X : in Integer) is
begin
if Full then raise Stack_Error;
else
Top := Top + 1; ST(Top) := X;
end if;
- end Push;
procedure Pop (X : out Integer) is
begin
if Empty then raise Stack Error;
else
X := ST(Top);
Top := Top - 1;
end if;
end Pop;

function Empty return Boolean is
begin return Top = 0; end;

function Full return Boolean is
begin return Top = 100; end;

end Stackl;

Generic Packages Allow Multiple Instantiation

Suppose that the program we are writing requires two stacks. To get a second stack, we will
have to repeat the entire definition of Stackl with only its name changed:

package Stack2 is
procedure Push (X : in Integer);
procedure Pop (X : out Integer); |
function Full return Boolean;
function Empty return Boolean;
Stack_Error : exception;

end Stack2;

package body Stack2 is
all of the definitions exactly as they
appeared in Stackl.

end Stack2;

R
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It is clearly a waste of time to have to copy the entire definition of Stackl verbatim.
Even if this copying is done automatically, say with an editor, it will still create a main-
tenance problem. Whenever a bug is corrected or the implementation of the package is
changed, the modification will have to be repeated for each copy; there is a much greater
chance of error. This approach is also inferior from the standpoint of readability since
it is not obvious to someone trying to understand the program that the two stacks are re-
ally the same; they will have to compare the definitions line by line to determine this.
Clearly, what we have here is a failure to modularize; the separate copies of the pack-
age should be abstracted out so that they have to be written and maintained only once,
which is an example of the Abstraction Principle. This ability is provided by Ada’s
generic facility.

We can see the motivation for this facility by looking at the way that programming
languages have solved similar abstraction problems. When we need to repeat the same
control sequence several times with different data, we define a procedure that imple-
ments the control sequence and then call it with the required data. When we need to
repeat the same data structure several times in different storage areas, we define a data
type that specifies a template, or pattern, for the data structure, and then we use that
type in variable declarations so as to create multiple instances of the data structure.
This is exactly the approach taken with packages. A template for packages, called a
generic package, is defined. The template can be used to repeat the package by generic
instantiations. Let’s see how this works. A template for a generic stack package would
be written

generic

package Stack is
procedure Push (X : in Integer);
procedure Pop (X : out Integer);

function Empty return Boolean;
function Full return Boolean;
Stack_Error : exception;

end Stack;

We can see that this looks exactly like our previous specification of the stack package ex-
cept that the word generic has been appended to its front. This is what informs us that
we are defining a template for stacks and not a particular stack. The body for the generic
stack package is exactly like that in Figure 7.8 so we will not repeat it.

We have seen how to write a template for a generic package. Next we must investigate
the instantiation of these templates. Suppose we want two stacks called Stackl and
Stack2. We can request the creation of two instances, or copies, of the template Stack
with the generic instantiations:

package Stackl is new Stack;
package Stack2 is new Stack;

These create two copies of the data areas defined by Stack, which are associated with
the names Stackl and Stack?2; the procedural code (for Push, Pop, etc.) can be
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shared by the instances. The two instances of Stack can be used with the dot notation,
for example,

Stackl.Push(I);
Stack2.Pop (N) ;
if Stackl.Empty then Stackl.Push(N); end if;

Notice that it is not possible to use the use construct to enter both stacks into the same scope
since procedure calls like Push (I) would be ambiguous; there would be no way to tell to
which stack the Push referred.

You have probably already noticed that package instantiation is analogous to the in-
stantiation of procedures, which we discussed in Chapter 3 on Algol-60. In that case, we cre-
ate a new activation record, or instance, for a procedure, which contains all of its local vari-
able storage but shares the executable code with other instances. When we study
object-oriented languages in a later chapter, we will see that these ideas are very closely re-
lated. One difference that must be pointed out here is that while procedures may be dynam-
ically instantiated, Ada allows only the static instantiation of packages; that is, each instance
is associated with a declaration and the number of declarations is determined by the struc-
ture of the program. (Note, however, that a package declaration may be a local to a proce-
dure that is dynamically instantiated; thus, there can be one instance of the package for each
instance of the procedure. This is the only sense in which Ada packages can be dynamically
instantiated.) Some other languages, for example, Simula-67 and Smalltalk (Chapter 12), al-
low the dynamic instantiation of packages in much the same way that records can be dy-
namically allocated.

B Exercise 7-15*: Discuss the dynamic instantiation of packages. Is there any need for
this facility? Why do you suppose it was left out of Ada? Discuss how such a facility
might be included in Ada, and any other mechanisms that would have to be included to
support it. Are there any efficiency consequences to dynamic instantiation? How about
simplicity or readability consequences?

Instances May Be Parametrically Related

The generic facility has more capabilities than the simple copying of templates. In the generic
stack package we have seen defined, the stack was limited to a size of 100. Now suppose
that instead of two equal-size stacks we needed Stackl to be of size 100 and Stack2 to
be of size 64. How would we accomplish this? It may seem that we would have to recopy
the definition of Stack with all of the occurrences of 100 replaced by 64. Again, this
would be a very inefficient thing to do; it would hurt writability, readability, and maintain-
ability. The analogous problem with procedures is solved by parameters; parameters allow
the data to vary from one procedure call to another. Ada adapts this approach to packages
by allowing parameters on a generic specification. For example, to allow the length of stack
to vary from instance to instance, the package is specified.

generic
Length : Natural := 100;
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package Stack is
procedure Push (X : in Integer);
procedure Pop (X : out Integer);
function Empty return Boolean;
function Full return Boolean;
Stack_Error : exception;

end Stack;

Notice that the Length parameter has been given a default value of 100; this is the value
it will have if it is not specified. The body of the package is altered by replacing each oc-
currence of 100 by Length as shown in part here:

package body Stack is
ST : array (l..Length) of Integer;
Top : Integer range 0..Length := 0;
the rest of the definitions,
but with 100 replaced by Length
end Stack;

When a stack is instantiated, this parameter must (if not omitted) be bound to a natural num-
ber. We can get the 100- and 64-element stacks by

package Stackl is new Stack(100);
package Stack2 is new Stack(64);

Since the default stack length is 100, the first instantiation could have been written
package Stackl is new Stack;

Generic packages can have any number of parameters of any types, just as procedures
do. They can also have several types of parameters that procedures cannot have. Suppose
that we needed to use a stack, Stack3, that contains only characters. Again it would seem
that we must copy the entire definition of Stack with every occurrence of Integer re-
placed by Character. This is undesirable for all of the reasons we have already discussed;
instead it is handled by generics. A specification of type-independent stacks is

generic
Length : Natural := 100;
type Element is private;

package Stack is
procedure Push (X : in Element);
procedure Pop (X : out Element);
function Empty return Boolean;
function Full return Boolean;
Stack_Error : exception;

end Stack;

The type parameter is defined to be private because it acts like a private type: The only op-
erations available on it (within the package) are assignment and equality comparisons. There
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are other forms of type parameters in generic packages that allow more operations but on a
restricted class of objects; this is too detailed to warrant our attention here. The implemen-
tation of Stack is shown in Figure 7.9. Given these definitions, the instantiation of general
stacks is accomplished as before, for example,

package Stackl is new Stack (100, Integer) ;
package Stack3 is new Stack (256, Character) ;

These stacks can be used with the dot notation as before, for example, Stackl.Pop (N)
or Stack3.Push (’A’). They can also be referred to without the dot notation through the
use construct:

declare

use Stackl;

use Stack3;

I, N : Integer;

c, D : Character;
begin

Push(I);

Push (C) ;

Pop (N) ;

Pop (D) ;

if Stackl.Empty then

if Stack3.Full then
end;

“Using” both stacks is permitted because context determines which procedure is intended.
For example, Push (I) is unambiguous because I is an Integer and there is only one
Integer Push procedure visible (the other Push procedure works on Characters). In
such a situation, the Push procedure is said to be overloaded since it bears several mean-
ings at once. This is analogous to the overloaded enumeration-type elements previously dis-
cussed and to the built-in overloaded operators (e.g., ‘+ works on Integers, Floats, and
Ccomplexes). Notice that context cannot be used for the Empty and Full functions be-
cause they do not have any arguments (or return values) that depend on the element type;
these functions must still be accessed with the dot notation.

Generic Packages Are Difficult to Compile

All of these convenient facilities are not without cost; efficient generation of code for generic
packages can be very complicated. We consider a few of the issues in this section. We saw
earlier that generic packages without parameters could be instantiated much as procedures
are instantiated: A new data area is created for each instance and the executable code is
shared by all of the instances. This case is illustrated by Figure 7.10. This same kind of shar-
ing is possible with most simple kinds of parameterization; for example, the generic Stack
package parameterized just by Length can make use of shared code if the differing infor-
mation, the array length, is stored with the instance. It is also necessary to use the most gen-

o |
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package body Stack is Figure 7.9 Implementation of a
ST : array (l..Length) of Element; General Stack Package
Top : Integer range 0..Length := 0;

procedure Push (X : in Element) is
begin

as before
end Push;

procedure Pop (X : out Element) is
begin

as before
end Pop;

function Empty return Boolean is
begin return N = 0; end;

function Full return Boolean is
begin return N = Length; end;

end Stack;

eral representation for Top (i.e., the largest Natural range) since the actual subrange varies
from instance to instance. The layout is shown in Figure 7.11. Notice that the variable-length
items, ST in this example, have been moved to the end of the package; otherwise it would
be necessary to use variable offsets to get to Top. We can see that it is still possible to share
code among instances, although there may be more run-time range checking (e.g., to ensure
that assignments to Top are legal).

Let’s consider a case of more general parameterization: type parameters such as we saw
in the general stack package. It is possible to instantiate this template with any type for which
assignment and equality are defined, which is almost all types. In various instances Ele-
ment could be Character, or Integer, or Complex, or personnel records, and so on.
We know that it is necessary to know the amount of storage occupied by an array element
in order to find the location of any particular element. Therefore, the code to access an ele-
ment of an array of Characters differs from the code to access an element of an array of
Integers. The apparent consequence of this is that each instance of a type parameterized
package must have its own procedures, compiled for the types that appear in that generic in-
stantiation. This is very inefficient since there is no sharing at all, even if the code bodies
turn out to be the same. There are several ways to improve on this. For example, the com-

Figure 7.10 Layout of Unparameterized Package In-
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Top Top push Figure 7.11 Simple Parameterization
length length Pop
ST
ST Empty
Stack2 Full
Stack1 : Shared code

for all Stacks

piler can keep a record of every set of generic parameters for which it has generated code,
that is, it can remember that it has already encountered a Stack (..., Integer), and
therefore that it has already generated code for the case Element = Integer. Later, if it
encounters another Integer stack, it can share this code. This approach can be improved
further by sharing code whenever the types are represented in the same amount of storage.
For example, if in a particular implementation Integers and Floats both occupy one
word, then the code bodies for Stack (..., Integer) and Stack(..., Float)
can be shared. This is possible because the only operations allowed on Elements are as-
signment and equality comparison, both of which are usually independent of everything ex-
cept the size of the value. Since there may be several type parameters to a generic package
and there are other more complicated types of parameters, this attempt to find sharable code
bodies can be fairly expensive. There is another approach to generic package implementa-
tion that simplifies some of the checking at the cost of decreased execution efficiency. This
is to record in the instance the length of all parametrically typed objects in the package, much
as was done for the length of the array ST. Then this length can be used for computing the
position of array elements and similar purposes.

B Exercise 7-16**: Read the discussion of generic packages in the Ada 95 Reference
Manual. Criticize this mechanism with regard to its complexity, efficiency, and general-
ity. Suggest improvements to this mechanism or show that most of the apparent im-
provements are less desirable.

Internal and External Representations

We have handled the representation of data structures in two distinct ways. For example, in
our Stack example the procedures for manipulating stacks were “part” of each stack, so
we wrote Stackl . Pop (N), and so on. This is sometimes called an internal representation
because the operators on a data structure are conceptually inside each instance of that data
structure. The other approach is the one we used with the Complex package: The operators
were in one package that managed all complex objects, so we wrote Re (Z), and so on. For
this reason, this arrangement is sometimes called an external representation. Frequently, a
particular abstract type can be represented either externally or internally. For example, we
can use an external representation for stacks by

package Stack_Type is
type Stack is private;
procedure New_Stack (S: out Stack);
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procedure Push (S: in out Stack; X: in Integer);
procedure Pop (S: in out Stack; X: out Integer);
function Empty (S: Stack) return Boolean;
function Full (S: Stack) return Boolean;

private
type Stack is record
ST : array (1..100) of Integer;
Top : Integer range 0..100 := O0;
end record;

end Stack_Type;

Then stack objects can be declared and initialized:

declare
use Stack_Type;
Stackl : Stack
Stack2 : Stack
begin

new Stack;
new Stack;

Push (Stackl, I);

Pop (Stack2, N);

if Empty (Stackl) then Push (Stackl, N); end if;
end;

B Exercise 7-17: The Stack_Type package implements only integer stacks of length
100. Show how generic packages can be used with an external representation of stacks
to provide manipulation of general stacks.

There are several differences between internal and external representations. In Ada, ex-
ternal representations are more general. For example, by using an external representation, it
is possible to treat Stacks as bona fide data values; they can be assigned, passed as para-
meters, and made elements of other data structures. For example, if we do not know exactly
how many stacks we will need, we can declare an array or linked list of Stacks and ini-
tialize just as many elements as are required. Thus, for an external representation, the num-
ber of instances can be determined dynamically; whereas for an internal representation, the
number of instances is limited by the number of generic instantiations the programmer writes.
This is not an inherent characteristic of internal representations; for example, Simula and
Smalltalk (Chapter 12) use an internal representation for all data abstractions (called classes),
but allow them to be dynamically instantiated. We will see in Chapter 12 that this is a more
object-oriented approach to data abstraction.

Ada 95 has been extended to include features for object-oriented programming, but they
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will be discussed in Chapter 12, since they are fifth-generation features, and our topic now
is the fourth generation. Suffice it to say, they add to the overall complexity of language.

Exercise 7-18*: Compare and contrast Simula’s or Smalltalk’s class facility and Ada
95’s package facility. Discuss ease of use, efficiency, security, power, and so forth.

Overloaded Procedures Complicate Operator Identification

We have seen that the members of enumeration types can be overloaded. We have also seen

- (in Complex_Type) that the built-in operators can be overloaded; that is, a particular op-
erator symbol (e.g., ‘+’) can stand for several different procedures, which in turn are selected
by the context of the symbol’s use. For example, Z := X + Y may invoke the built-in
‘+” procedures (for Integers and floating-point types) or any user-defined ‘+’ procedure
(e.g., one for adding a real number to a complex number), depending on the types of Z, X,
and Y. This process is called operator identification. In Ada procedures can also be over-
loaded; this most commonly occurs with generic packages. Suppose Int_Stack_Type and
Char_Stack_Type are packages that implement externally represented stacks of integers
and characters, respectively. An example of their use is

declare
S1 : Int_Stack _Type.Stack;
S2 : Char_Stack _Type.Stack;
begin

Int_Stack_Type.Push (S1,5);
Char_Stack _Type.Push (S2,'A’);
end;

It is very inconvenient to have to prefix every call of Push or Pop with Int_Stack_Type
or Char_Stack_Type, so we can employ use to avoid this:

declare
S1 : Int_Stack _Type.Stack;
S2 : Char_Stack_Type.Stack;
use Int_Stack_Type;
use Char_Stack_Type;

begin
Push (S1,5);
Push (S2,'A’);

end

After the two use declarations have been elaborated, there are two definitions of each of
the stack procedures (Push, Pop, Empty, Full) available, one for integer stacks and one
for character stacks. These are distinguished by context, just as for overloaded operators.
Push (S1,5) must be the Push from Int_Stack_Type because S1 is an integer stack
and 5 is an integer. Because procedures can be overloaded, we can see that an Ada compiler
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must go through a process of operator identification for procedure names. This process de-
pends on both the arguments of the subprogram and, if it is a function, its context of use.
For example, in the expression

Z := F (G (X, Y));

the F procedure to be used depends both on the type of Z (i.e., F’s context) and on the type
returned by G (i.e., F’s argument). On the other hand, G itself may be an overloaded proce-
dure so that its meaning depends on its arguments (X and Y) and its context of use (the ar-
gument required by F). For the Ada program to be correct, there must be a unique selection
for each of F and G that satisfies the above constraints. If there is none, the program is mean-
ingless; if there is more than one, it is ambiguous. We can see that if overloading is used ex-
tensively, it may become very difficult for both the human reader and the compiler to de-
termine what an Ada expression means. The operator identification process is further
complicated by optional and position-independent parameters, which are discussed in Chap-
ter 8, Section 8.1. Operator identification is usually accomplished by propagating type in-
formation up and down an expression tree in several passes, the exact number of passes re-
quired being a subject of ongoing research. You may think that overloaded procedures are
uncommon, but this is not the case. For example, the Ada 83 input-output package defines
over 14 meanings for Get, one for each built-in type (in fact, there are more, since there is
one for each enumeration type). Further, programmers are encouraged to overload procedure
names by allowing them to declare new meanings for procedures directly.

B Exercise 7-19**: Here are two conflicting goals: (1) Overloaded operators are very con-
venient for groups of related operations, for example, addition on various kinds of num-
bers and matrices and Push on various kinds of stacks. (2) This extensible overloading
introduces complexity into the language for both the reader and the compiler. Discuss var-
ious ways of resolving these conflicting goals, and propose and defend a good solution.

1. Defend or attack this statement: Strong typing has gotten out of hand; it now gets in the
way of programming rather than simplifying it.

2. An Ada constant declaration can bind names to the values of expressions. These expres-
sions are evaluated when the scope of the declaration is entered. Describe in detail the im-
plementation of Ada’s constant declarations.

3. Find examples of the interface specification versus implementation distinction in other en-
gineering disciplines, such as electrical engineering, architecture, automobile construction,

and stereo systems.

4. Read and critique the discussion of name and structural type equivalence in J. Welsh,
M. J. Sneeringer, and C. A. R. Hoare, “Ambiguities and Insecurities in Pascal.” Software—
Practice Exper. 7, 6 (November 1977).

5. Read about at least one other abstract type language (e.g., Alphard, CLU, Euclid, Modula,
Tartan) and write a detailed comparison with Ada.

6. Ada provides only a limited amount of control over access to data structures. In “The Nar-
rowing Gap Between Language Systems and Operating Systems” (Information Processing
77, North-Holland, 1977), Anita Jones argues that language designers can learn a lot from
operating system mechanisms for access control. Read and critique this paper.
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7.

[ ]

10%%*,

In “Information Distribution Aspects of Design Methodology” (Information Processing 71,
North-Holland, 1971), Parnas does not propose any linguistic mechanisms for supporting
information hiding. Attack or defend the position that linguistic mechanisms are needed to
enforce information hiding.

Evaluate the alternatives to global variables discussed in J. E. George and G. R. Sager’s
“Variables—Binding and Protection” (SIGPLAN Notices 8, 12, December 1973).

. We have discussed the similarities between generic packages and procedures; they are both

parameterized abstraction mechanisms. If procedures were allowed to return packages, then
the two would be the same. Develop this idea in detail. What extensions would have to be
made to procedures to capture all of the power of generic packages? What implications
would this have for the rest of the language? Would implementation of package returning
procedures be more or less difficult than implementation of generic packages?

Packages are second-class citizens in Ada. For example, packages cannot be passed as pa-
rameters, stored in variables, or made elements of arrays. Investigate in detail the design
and implementation issues that would result from making packages first-class citizens.




